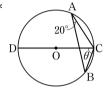

【1】右の図において、角 θ を求めよ。ただし、O は円の中心である。

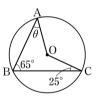
【2】下の図において、角 θ を求めよ。ただし、Oは円の中心である。



(2)*

(3)*

【3】下の図において、角 θ を求めよ。ただし、Oは円の中心である。


(1)*

(2)

(3)

[1]

$$\angle BCA = \angle BDA = 32^{\circ}, \angle BAC = 90^{\circ}$$

よって
 $\theta = 180^{\circ} - (90^{\circ} + 32^{\circ}) = 58^{\circ}$

[2]

$$(1) \quad \theta = 62^{\circ} \cdot \frac{1}{2}$$
$$= 31^{\circ}$$

(2)
$$\theta = (360^{\circ} - 62^{\circ}) \cdot \frac{1}{2}$$

= 149°

(3) 線分BDを引く。

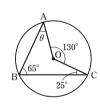
$$\angle CDB$$
= $\angle CAB$
= 20°
 $\angle CBD = 90^{\circ}$

よって

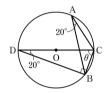
$$\theta = 180^{\circ} - (90^{\circ} + 20^{\circ})$$

= **70**°

[3]


(2)
$$\angle AOD = 104^{\circ} - 24^{\circ} = 80^{\circ}$$

よって


$$\theta = 80^{\circ} \cdot \frac{1}{2}$$
$$= 40^{\circ}$$

$$(3) \angle AOC = 65^{\circ} \cdot 2$$
$$= 130^{\circ}$$

四角形ABCOの内角の和を考えると $\theta + 65^{\circ} + 25^{\circ} + (360^{\circ} - 130^{\circ}) = 360^{\circ}$

$$\theta\!=\!40\degree$$

